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The statistical mechanics of two Ising ferromagnetic planes coupled by a local 
interlayer two-spin interaction have been studied by means of a variety of 
calculational methods, including different mean-field approximations, Migdal- 
Kadanoff-type renormalization-group techniques, scaling theory, as well as 
numerical Monte Carlo simulation techniques. The phase diagram has been 
derived as a function of the interlayer coupling strength. Furthermore, various 
thermodynamic variables have been determined, including the interlayer corre- 
lation function, which is proportional to the interplanar force. It is found that a 
Migdal-Kadanoff renormalization with a decimation procedure which involves 
the interlayer coupling in an appropriate fashion provides an accurate descrip- 
tion of the phase diagram and that a mean-field description provides a good 
description of the phase diagram and the interplanar force, except for very low 
interlayer coupling strengths. 

KEY WORDS: Ising model; layered systems; phase diagram; interlayer 
coupling; mean-field theory; renormalization group; scaling theory; Monte 
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1. I N T R O D U C T I O N  

In the absence of an exact solut ion to the three-dimensional  Ising problem, 
a n u m b e r  of at tempts to go beyond the wel l -known statistical mechanical  

solut ion to the two-dimensional  Ising problem have been proposed for 
systems of coupled two-dimensional  Ising planes, and  all conceivable 
aspects of semi-infinite Ising systems have been studied by a variety of 
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techniques.(1 10) Originally much of this work formed an integral part of 
the general study of critical phenomena and served at least two major 
purposes. One was to study the dimensional crossover in the critical 
behavior. (8) Another purpose was to produce solutions to lattice models of 
thin films which are finite in one dimension and infinite in the two other 
dimensions. (6) One of the cornerstones in this work was the development 
of the celebrated finite-size scaling theory, (5) which has proved so success- 
ful for deriving results valid in the thermodynamic limit from data for 
finite systems, e.g., as they can be obtained from computer-simulation 
calculations.(11) 

More recently a renewed interest has arisen in the properties of 
coupled Ising planes, in particular the limit of two interacting planes, as a 
model system of interacting solid surfaces or thin films. (1~ In our case, 
the interest is largely motivated by fundamental problems underlying the 
general study of forces between surfaces and questions regarding colloidal 
stability. (12) This study often considers materials properties of thin mono- 
molecular organic films, such as Langmuir and Langmuir-Blodgett films or 
lamellar amphiphilic (e.g., lipid) bilayers. (13) The experimental study of 
such systems has made significant advances in recent years due to the 
advent of the surface force apparatus (12/ and microscopic techniques like 
the atomic force microscope. (~4'15) It is now well known that the strength 
of the force (and even its sign) between surfaces depends in a very critical 
fashion on the molecular degrees of freedom on the surfaces as well as on 
the nature of the medium in between the surfaces. 

The fundamental physical problem in relation to the study of forces 
between surfaces and macroscopic bodies is, given a certain form of the 
direct intra- and intersurface microscopic forces, to understand the form of 
the resulting effective macroscopic force acting between macroscopic bodies 
whose surfaces are covered with molecular entities with internal degrees of 
freedom. The correlations in the fluctuations in these degrees of freedom 
within and between the layers are responsible for a thermal renormaliza- 
tion of the direct force between the layers, often resulting in an entropy- 
dominated macroscopic effective force. There are examples of systems (~6) 
where this renormalization in the fluctuation-induced force may even 
change the sign of the effective macroscopic force relative to that of the 
microscopic force. 

In the present paper we study the statistical mechanics of two coupled 
spin-l/2 Ising square planes which are infinite in two dimensions. The 
model is defined by the Hamiltonian 

~  Z ff](7)-J2 ~ ~176176176 (0"]'{-0"2) (1) 
(i,j) <i,]) i i 
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where the two first sums are over nearest-neighbor in-plane pairs in the 
two different planes and the third term couples pairs of opposite spins 
across the planes. Indices 1 and 2 refer to the two planes, and the spin 
variables take on the values cr i = +1. All spins are coupled ferromagneti- 
cally, Jl  > 0, J2 > 0, J12 > 0. h is an external magnetic field. In the present 
paper we focus on the symmetric zero-field case (h = 0) with J1 = J2 = J, in 
which case the Hamiltonian can conveniently be written 

( i , j )  ( i , j )  " 

where fi = (kB T ) - ' ,  K =  fiJ, and 3,- = J12/J. 
Introducing an interlayer correlation function 

(2) 

where N is the total number of sites in the two Ising planes, the differential 
of the generalized Gibbs potential G can be written as 

N 
dG = - S  d T -  N ( a )  d h - - ~  Pl2 dJl2 (4) 

Assuming that the direct coupling between spins in different planes depends 
on interlayer distance r, as J12(r), the macroscopic thermodynamic force F 
between the two layers takes the form 

e = - \  dr/=TP' \ dr / (5) 

Thus, apart from a factor depending on the details of the coupling constant 
and the system size, the force is determined by the interlayer correlation 
function. 

The critical behavior, i.e., the critical exponents, for a system consist- 
ing of a small number of Ising planes coupled by a bilinear interaction, 
specifically two coupled planes, is expected to be the same as that of the 
two-dimensional Ising model. This is so because the interlayer coupling 
neither breaks the spin-reversal symmetry nor introduces new symmetry 
elements and correlation lengths in the problem. Different types of inter- 
layer couplings, e.g., four-spin interactions as in the Ashkin-Teller model, 
are required to change the critical behavior. (17) Whereas the critical 
exponents are not expected to be influenced by the presence of the inter- 
layer coupling, nonuniversal properties, such as the value of the critical 
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temperature, will be affected. In the ferromagnetic case the critical tem- 
perature will be increased by the coupling. In the limit of J12 = 0 the critical 

2D K~.(J12 = O) temperature is that given by the Onsager solution, K c = = 
�89 In(x/2 + 1), whereas in the strong-coupling limit, J12 ~ 0% each pair of 
spins coupled across the layers will act as a single spin which is coupled to 
the other spins with twice the coupling strength, i.e., K~.(JI2= oo)= 
�89 = 0). 

The system of two coupled, identical Ising planes (J~ =,/2 = J) was 
first studied by Ballentine, (~ who investigated the model by high- 
temperature series expansions in the case of J12 = J. This work was later 
extended up to five layers by Allan32) The case of J l z ~ J  was studied by 
Abe (3) and Mikulinskii ~4) in the context of a scaling theory valid in the 
limit of a weak interlayer coupling. The fully fledged finite-size scaling 
theory for finite-size Ising lattices (Jr = 1) with open surfaces was intro- 
duced by Fisher and Barber in 1972 (5) and later used by Binder ~6) to 
analyze data generated by Monte Carlo simulations, and by Capehart and 
Fisher (8~ to analyze data obtained by high-temperature series expansions. 
Using Landau theory, Imry (~8) studied the closely related problem of 
weakly coupled layers with order parameters having a continuous sym- 
metry group. More recently, Parga and Van Himbergen (9~ studied the 
model with two and more layers by means of a Migdal-Kadanoff-style 
real-space renormalization scheme. 

The more general case in which the layers are not forced to be identi- 
cal (J1 r J2) has also received some attention. The most complete account 
is that of Oitmaa and Enting, (7) who combined mean-field theory, scaling 
theory, and high-temperature expansions in a study of the two-layer model, 
thereby calculating, e.g., the variation of the critical temperature, the 
layer magnetizations, and the interlayer correlation function with J~2. 
Very recently, Ferrenberg and Landau (m) considered the same two-layer 
problem using Monte Carlo simulations and mean-field theory. 

Finally, it should be noted that the case of two coupled one-dimen- 
sional Ising chains has also been considered (19) with a view to examining 
the simplest possible statistical mechanical model system with fluctuation- 
induced forces. For that system the phase diagram and the interchain force 
can be calculated exactly by means of transfer-matrix techniques. 

Despite these efforts a number of interesting questions concerning the 
thermodynamics of coupled Ising planes remain unresolved. Specifically, 
phase diagrams are still lacking, tests of a number of proposed scaling 
relations have not been performed, and the question of interlayer forces has 
only received little attention. At the same time we feel that the theoretical 
description of the models can be improved in the case of, e.g., the scaling, 
mean-field, and approximative renormalization group approaches. In this 
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paper we attack some of these problems for the simple case of two coupled, 
identical Ising planes. 

The outline of the remaining part of this paper is as follows. In 
Section 2 we present the scaling arguments which lead to a prediction 
of the relationship between the critical temperature and the interlayer 
coupling strength, i.e., the phase diagram. Scaling relations for the 
dependence of the interlayer correlation function, the order parameter, and 
the corresponding isothermal susceptibility on the interlayer coupling 
strength are also presented. Two versions of a mean-field approximation 
for the phase diagram and the interlayer force are then put forward in 
Section 3. The renormalization-group approach to the phase diagram is 
presented in Section 4 in the form of two versions of a real-space 
Migdal-Kadanoff-type renormalization scheme involving two different 
ways of performing the decimation procedure. The results of a numerical 
Monte Carlo computer-simulation approach to the problem are then 
described in Section 5. Finally, the different approaches are discussed and 
compared in Section 6. 

2. S C A L I N G  T H E O R Y  

In this section we will investigate the influence of the interlayer 
coupling strength on the thermodynamics of the two coupled Ising planes 
in terms of approximative scaling relations. The validity of these relations 
is examined by Monte Carlo simulations in Section 5. Thus, it is natural to 
be concerned with the form of the scaling relations both in the thermo- 
dynamic limit as well as for finite systems. 

Some of the relations to be presented have already been known for 
some time. For instance, the relation for the shift in critical temperature 
was derived in refs. 3 and 4 by investigations of the asymptotic behavior 
of a perturbation expansion of the partition function for the complete 
problem and in refs. 7 and 18 by simple self-consistent (mean-field) 
arguments. Similarly, the relation ( ~ ) =  ~(Jr) was derived from mean-field 
arguments in ref. 7, in which a number of other scaling relations were 
proposed for the general problem, J t  5 ~ J2- However, the unifying features 
of these approaches and the range of validity of the theory have not been 
discussed. 

Basically, the above approaches involve simplifying arguments which 
will allow one to take advantage of the well-known scaling behavior 
of the two-dimensional Ising model (2~ or, equivalently, of homogeneity 
relations, which are expressed in terms of the reduced temperature t =  
K I D / K  - 1 and the external field h, together with exponent relations and 
the particular values of the exponents. In the case of the perturbation or 
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cumulant expansion of the (logarithm of the) partition function it is 
convenient to write the Hamiltonian in the form (a) 

~r = 9fro(l) + ~o(2) + J , ~  

<i , ) )  i 

-JZ 
i 

where 7 is the layer index. With the free energy densities 

1 
/~N 

g = ln(Tr~ e -  ~u) = _ ~-N In Z 

In Zo 

(6) 

the perturbation expansion reads 

1 J,~ 
g(t, h, J,.)=go(t, h)-~-~ Z ~ <(-/;~)~ 

n = l  

(7) 

In this expansion one can safely invoke the two-variable scaling hypothesis 
for the two-dimensional Ising model in each term of the expansion, since 
the cumulants ( ( - f l ~ ) n ) c  can be rewritten as spin correlators averaged 
over the distribution for the decoupled Ising models. In principle, the exact 
asymptotic behavior close to Kc 2D is contained in this approach. However, 
useful generalizations can only be obtained if the exponent ~/is assumed to 
vanish. (3) By making this assumption the following form of the singular 
part of the free energy is obtained(3): 

g(t, h, Jr) = [tl 2-~ ~ 1  itl ~ , (8) 

where A is the gap exponent and cr and 7 are the exponents characterizing 
the divergence of the zero-field heat capacity and the zero-field isothermal 
susceptibility, respectively. In the case of the self-consistent theory (7'18) one 
studies a mean-field Hamiltonian of the form 

= fffmf(1 ) + fffmr(2) 

~mr(~)=-J y~ ,~;',~-(h+@ <,~>)Y~,~ 
( i , j>  i,o~ 

(9) 
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Basically, this is the Hamiltonian for two decoupled Ising models in 
an effective mean field, introduced by the decoupling o1o -2 -* 
�89 62+ ( 0 -2 )  a l)  and by invoking translational invariance. Thus, close 
to the critical point we can, according to this theory, introduce the usual 
homogeneity relations in the singular part of the free energy as follows: 

/ h  J , . \  

which will lead to the same scaling predictions as Eq.(8), since 
7 = A -/~.(2~) In Eq. (10), B is a correction-to-scaling amplitude. 

Now, in order to derive the scaling relations we choose Eq. (8) as the 
starting point. Since we expect the model to belong to the universality class 
of the two-dimensional Ising model, at h = 0 and for a fixed value of Jr,  we 
can assume that 

( Jr,_e+ g(t, O, J , . ) =  ltl 2 - ~  ~ +  O, ittr ] -  3 lt'l 2 ~ (11) 

where t ' = K c / K - 1 ,  K c being the inverse critical temperature for the 
coupled model at Jr. Anticipating an upward shift in the critical tem- 
perature It '  = 0, t (Kc)  > 0], we write 

(0 Jr ) ~+(0,  A s) 
cb? \ , t(Kc),~] = 

Ki D (12) 
t (Kc)  - 1 = To = AJ~/~ 

Kc 

where A y is the argument of 45~- which makes q)~- vanish. This is the 
scaling form for the shift in critical temperature. 

Furthermore, by using Eq. (8) and the definitions 

/ \ [63g } {~2g'~ , (og ' ]  (13) 
- \ / - -  ' zT= \-2i~],~ P'2= \~Jr/,,~ ( 0 - ) =  Oh t, Jr - , r  - 

standard manipulations lead to, e.g., 

h Jr  "~ = lB/Td~+- "l (14) 
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and at h = 0 and t = 0 one eventually obtains 

( ~ ) ~ ,  fl/y 1/(~-- l) 1/14 
J r  ~ J,. ~ J r  

X r ~  J r  ~/z' ~ J r  1 ( 1 5 )  

P12  ~ j2f l /y  ~ j2r/(& - 1) ~ j 1 / 7  

where we have used the exact exponent values for the two-dimensional 
Ising model, /? = 1/8, 7 = 7/4, and 6 = 15. These relations could also quite 
easily be obtained from Eq. (10) using the relation ( a )  ~ h ~/~ and invoking 
P~2 = (0") 2, which is 'consistent with the mean-field ideas used in Eq. (9). 

To facilitate a quantitative check of the proposed scaling relations we 
will formulate finite-size scaling versions of the relations (15). Clearly, the 
formulation will follow the same lines as those used to derive Eqs. (12) and 
(14). The additional requirement for the formulation is the scaling form for 
the correlation length 

=ltl-~V-'? .1~ ~,ltl / Itl~'l 

and the finite-size scaling hypothesis for the free energy: 

g=g(t,h, Jr, l-1)=ltl 2-~q54 t~ , l t l~ ,  

= Itl 2 -~  r  i ~ , l t i , ~ ,  (17) 

where l is a characteristic length scale for the system. Again, standard 
methods are used to derive, e.g., 

( a ) z  = Itl ~ r l~]~ ' I t l "  = l-~/v02 I~A ' l t l "  (18) 

Thus, we are led to the following relations: 

( a ) , = /  ~/vqh ( ~ )  

T,l - -  ~F2 (19) 
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Since the scaling relations are derived under circumstances corre- 
sponding to a mean-field description of the interlayer coupling together 
with an assumption of long-range correlations in the planes, we do not 
expect the relations to be valid for all values of the scaling variable Jr"~7~ l" 
Basically, we expect at least one crossover for high values of Jr" At high 
values of Jr it may be expected that the range of correlations is reduced to 
such an extent that the scaling hypothesis no longer applies. Furthermore, 
(0"), P12 and also % are bounded, implying that limiting values are 
approached at large Jr. In the limit of a very weak coupling strength the 
situation is less clear-cut since it is possible that the mean-field prescription 
ala2 _, �89 (a2)~1) will be equivalent to replacing a one-scaling 
operator with a linear combination of other scaling operators in the region 
of strong fluctuations, which would imply a breakdown of the mean-field 
theory. How and to what extent the operator alo'2 is affected by fluctua- 
tions is hard to predict a priori .  To complicate matters further, it should be 
noted that an order-of-magnitude estimate of the Ginzburg critical region 
tg from a Landau expansion on the basis of Eq. (9) (18) leads to the opposite 
(and surprising) prediction tg ~ % ,  implying the vanishing of the region of 
breakdown of mean-field theory in the low-coupling limit. This is some- 
what counterintuitive, even though an expansion relying on a decoupling 
of layers is supposed to be exact in the limit of Jr-- 0. 

3. M E A N - F I E L D  T H E O R Y  

In this section we present two kinds of mean-field calculations, giving 
rise to approximate phase diagrams as well as determinations of the 
interplanar force as a function of K and Jr. 

In the first approach we decouple spins corresponding to different 
lattice sites (i, j) within the planes. This implies that nearest-neighbor spins 
in different planes are not decoupled. We can regard this as an extension 
of the mean-field approach applied by Oitmaa and Enting, (v) where all 
spins are decoupled. This is obviously a crude approach, resembling the 
traditional mean-field description of the two-dimensional Ising model. 

In the second approach, we rewrite the Hamiltonian in such a way 
that the interlayer correlation function can easily be treated in a mean-field 
manner, by regarding it as part of an effective field and incorporating this 
assumption into the Onsager solution of the two-dimensional Ising model. 
The fact that some of the variables in the problem are treated exactly in 
this approach is expected to give rise to a more quantitative description 
than the first approach. 

In both cases we determine the optimum distribution by variationally 
minimizing the free energy with respect to the mean-field distribution by 
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following the ideas used for multistate problems (e.g., the Potts model). ~22) 
For a general expectation value (A[p] )  regarded as a functional of the 
probability distribution p, we define the variational derivative as 

~( AEp-] ) _ lim ( A[pi + ecS~j] ) - ( AEpi] ) (20) 
( ~ p j  ~ ~ 0 8 

which is a generalization of the definition used in ref. 20 to the discrete 
c a s e .  

3.1. Mean-F ie ld  Theory  I 

In this approach the factorization of the probability distribution and 
partition function in single-site factors implies that it is sufficient to 
consider the ith single-site term of the Hamiltonian, which can be written 
a s  

-flhi=l~=~l.2(2K(a))aT+JrKcr]a2) (21, 

because of translational invariance. Our variational principle states that 
the free energy density must be minimized with respect to the single-site 
distribution under the constraint that the distribution is normalized. In 
terms of variational derivatives we write 

- f l ~ - 2 =  - ~ p -  ( ln p ) - 2  
(22) 

= -f i~b- (1 + ln  p ) - 2 = 0  

where 2 is a Lagrangian multiplier. This implies that 

1 
P = Zo e-  ~ (23) 

Zo = ~ e -/~ (24) 
cra 

-fl~b= -,g ah=4K<~) ~ a~+ JrKa~cr 2 (25) 
@ ~=1,2 

In principle these formulas contain all the relevant thermodynamic 
information. In particular, we have 

sinh(8K(cr ) ) 
( a )  = cosh(gK(a) )  + e 2srx (26) 

cosh(8K( a ) ) - e -  2JrK 
P12 = cosh(8K(a ))  + e-2JrK (27) 
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By expanding for ( a ) ~  0 and K--+ K c we obtain 

- ln(8K C - 1) 
Jr, c - (28) 

2Kc 

This is a closed-form expression for the mean-field I phase diagram 
shown in Fig. 1. We note that in this approach Kc(J r=0)=0 .25  and 
K,.(J,.--+ oo)=0.125, indicating a systematic overestimation of the critical 
temperature�9 On the other hand, the behavior confirms our expectation 
that the critical temperature should be doubled a s  Jr --+ 00. 

For K<,% K,, we get the following relations for the interlayer correlation 
function: 

p ,2 (K ~  Ko J j  = tanh(JrK) ~ J, .K+ O ( ( J r K )  3) (29) 

1 
p~2(K= K C, Jr,~.) = ~ 7 -  1 (30) 

while P~2 must be determined numerically for K > K  c. The formulas in 
Eqs. (29) and (30) indicate that P12 increases linearly for small values of 
JrK. Furthermore, in this mean-field picture the possible singular behavior 
of P~2 in the critical region must soMy come from singularities in the order 
parameter ( ~ ) .  

i i i i i ~ t 

0.4 ~ M K I I  

MKI /'20.3 M F I <  

0.2 

0 1 5  . . . . . . .  
�9 - - 3  - 1  1 3 

ln Jr 

Fig. l. Phase diagram, K vs. ln(J,), obtained for the ferromagnetically coupled Ising bilayer 
system by using MC data and various theoretical approaches. In this semilogarithmic plot the 
extremely weak coupling strengths J, < 0.01 are not represented. 
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3.2. Mean-Field Theory II 

Let us reformulate the Hamiltonian as follows: 

-/ ae K ( y .  1,  ,2) (31) = aiaj..~. ~ 2 2 ailTj q-Jr Gift 
<i j> <i,j> " 

<i,j> 

where we have introduced the new spin variables 

1 2 si = aiai, ai = a~ (33) 

In terms of these variables the interlayer correlation function is simply 
p12 = ( s i ) =  (s> because of translational invariance. We will now for- 
mulate a mean-field approach, based on two assumptions, namely that the 
total probability distribution can be factorized into a product of an s- and 
a a-dependent distribution and that we can treat the s distribution in a 
single-site approximation. This implies that the average value of the 
Hamiltonian can be written as 

N 
< - - ~ > s = ( l ~ - < S > 2 s )  K 2 a iaJ '~- 'SJrK<s>s=-- f l~mf  ( 3 4 )  

<i,j> 

( >" aiaj <--f l jc t~  2) K<~> + - f J r K < s > s  (35) 

where the subscripts s and a refer to the individual s- and a-dependent 
distributions. The a-dependent average has the form of minus the average 
dimensionless internal energy for a two-dimensional Ising model evaluated 
at K. It follows from Eq. (34) that the mean-field model is equivalent to a 
different Ising model with a new coupling constant and a displaced zero 
point of the internal energy. From this fact we immediately conclude that 
the critical point can be determined as 

2 1 K'c(P~2) = K<.[1 + (P12.c) ] = ~ ln(1 + ,,f2) (36) 

where g12,c refers to the optimal distribution, which is determined by 
the same variational principle as in the previous section. Applying this 
technique, we obtain 

ah = 
-fi~b= 6ps [ -2p12<-- f lh(K)>.+JrK]s j  (37) 



Two Coupled Ising Planes 735 

Z o =  ~ e Zr (38) 
~ 7 = + 1  

Pl= = t a n h [ 2 p , 2 ( - f l h ( K )  }~ + J~K]  (39) 

where ( - f l h ( K ) } ~  is minus  the average dimensionless internal  energy for 
the two-dimensional  Ising model ,  evaluated at the inverse t empera ture  K. 
This can be obta ined f rom the Onsager  solution by numerical  evalua-  
tion. (2~ Inver t ing Eq. (39) and combining  this with Eq. (36), we obtain  an 
expression for the phase  d iagram in closed form as 

1 I l n  (1 +P~2'c~ \ ]  - - ~  1-~,~./ }~]  (40) Jr, c=~c -- 4p t2 ,~ ( - f l h (Kc )  

[�89 + ~ )  
P12'~ = L ~2-~ l J  m ] (41) 

1 / ~  o)~/ ~ / ~  
~  o /  

0 ~ ~ 
~ . /  9 

t l  E s t i m a t e d  
c r i t i c a l  
v a l u e  

- 3  I I / I I p 

-3 -2 -1 0 1 2 

In Jr 
Fig. 2. P~2 as a function of J, in a double logarithmic plot displayed for four different values 
of K. The curves were obtained from the MFII approach and from Monte Carlo simulations 
on an l= 32 lattice. For both types of data the respective value of P12,c corresponding to the 
critical point is marked on the curves by an asterisk. For convenience, the different curves 
have been displaced vertically with A In P12 = 1 relative to the one below. The values on the 
vertical axis correspond to K = 0.244. 

822/73/3-4-18 
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The phase diagram obtained from the above equations is also shown in 
Fig. 1. Apart from the existence of bistable solutions corresponding to 
negative values of Jr for 0.419~<K~<�89 ), a phase diagram in 
accordance with our expectations is obtained. In particular, K c ~  
1 ln(1 + x/2) for Jr ~ OC. The peculiar behavior in the vicinity of the critical 
point of the two-dimensional Ising model is likely to be a consequence of 
the restrictive assumptions made in our mean-field approach. Regarding 
our model as a perturbated two-dimensional Ising model, we must expect 
that the mean-field approach breaks down in the vicinity of the critical 
point of the two-dimensional Ising model itself. 

The interplanar force, Eq. (5), as a function of K and Jr can be 
obtained from Eq. (41). Figure 2 shows pl2(Jr) for different values of K. It 
is seen that Pl2(Jr) increases linearly in a log-log plot for J r < J r ,  c . By 
direct evaluation, one finds a slope of value 1, which agrees well with the 
mean-field approach I. 

4. RENORMALIZATION-GROUP CALCULATIONS 

In this section, we will apply a real-space Migdal-Kadanoff-type 
renormalization scheme (23'24) in two different ways in order to obtain 
approximate phase diagrams. 

In the first approach (Section 4.1) we treat the interlayer coupling as 
a sort of perturbation in the sense that we add step by step the interlayer 
couplings to the intralayer couplings during the renormalization group 
(RG) transformations by bond-moving procedures, so that we restrict the 
decimations to involve intralayer couplings only. Thus by "smearing" out 
the interlayer couplings we force the system to behave qualitatively like a 
two-dimensional Ising model from the start, and we regard the interlayer 
coupling only as an additional coupling strength that allows the system 
to enjoy an ordered state at a higher temperature than for the uncoupled 
two-dimensional Ising model. Hence, the fact that the interlayer coupling 
also forces the layers to be correlated is only taken into account indirectly. 
We must therefore expect that this approach works best at low interlayer 
coupling strengths. 

In the second approach (Section 4.2) we try to account for the inter- 
layer coupling in a more accurate way by including it in the decimation 
procedure. This approach involves a more complicated decimation proce- 
dure, but it must be expected that more reliable results are obtained, at 
least for strong interlayer couplings. 

In both approaches we apply a four-step procedure, where we 
distinguish between the x and y directions in the Ising planes. (24'2s) It is 
important to note that when we perform the RG transformations we shall 
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treat the interlayer couplings and the intralayer couplings as independent 
couplings of different types. This means that when we renormalize the 
interlayer couplings, we can suppress the K dependence and treat them as 
if it is only Jr that varies during the transformations. In the end we shall 
locate fixed points in the RG equation for K, choosing different fixed values 
of Jr in order to obtain the phase diagram for the system. It should be 
noted that by treating the interlayer coupling in this way, we can regard 
the methods as approximate ways of implementing a Migdal-Kadanoff 
renormalization scheme, in the Sense that the total sum of the bond 
strengths and the symmetry in the problem are preserved. 

2.1.  M i g d a I - K a d a n o f f  RG I 

This approach is closely related to the Migdal-Kadanoff renormaliza- 
tion scheme applied to the two-dimensional Ising model, involving the 
familiar one-dimensional decimation procedure for the Ising chain. ~24) 
The interlayer coupling is incorporated by an additional bond-moving 
procedure as described in Fig. 3. We obtain the following equations: 

1. Bond moving in the y direction and bond moving of interlayer 
couplings (Figs. 3bI and 3cI): 

K~ = 2Ky (42) 

K'x=K x 1+ (43) 

J;=Jr 1+ (44) 

2. Decimation in the x direction (Fig. 3dI): 

K'x'=tanh ~[tanhZ(K'x)] 

= tanh-I  {tanh2 [Kx ( 1+ 4 +JrJrJJJ "~'~ (45) 

3. Bond moving in the x direction and bond moving of interlayer 
couplings (Figs. 3eI and 31I): 

{ [Q -t'Jr~l~ K"=2K'~'=2tanh -~ tanh 2 Kx 1 4 + J r / J J  (46) 

KS'=Ky 2 + ~ - ~  =Ky 2+8+Jr(1._kjr/(4.k_jr))/I (47) 
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K~ AK 

, K~ 

a 

bl. Bond-moving in the y-direction 

cI. Bond-moving of the interlayer coupling 

dl. Decimation in the x-direction 

el. Bond-moving in the x-directlon 

fl. Bond-moving of the interlayer coupling 

gl. Decimation in the y-direction 

intralayer coupling: K~, K~ 

interlayer coupling: J,K 

bll. Bond-moving in the y--direction 

cl[. Decimation ~n the x-direction 

dIl. Bond-moving in the x-direction 

f ..... ii ! 

e[I. Decimation in the y-direction 

Fig. 3. The  steps in the dec ima t ion  procedure  appl ied  in the R G  calculat ions.  M K I  (left 
panel)  involves  a successive in t roduc t ion  of the in ter layer  coup l ing  in the planes (cI, eI), while 
M K I I  ( r ight  pane l )  involves  a more  t r ad i t iona l  dec ima t ion  (four-step procedures) .  
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4. Decimation in the y direction (Fig. 3gI): 

{ [ ( Jr(l+Jr/(4+Jr)) ~l~ 
Ky"=tanh ~ tanh 2 Ky 2-~ 8 + J ~ ( l + J r / ( 4 + J ~ ) ) J J )  (48) 

We have now completed the RG transformation for ,~ = 2 (corresponding 
to an increase in the lattice constant by a factor 2). The above equations 
can be generalized to arbitrry 2 to obtain 

{ [ ( (2--1) Jr~l'~ (49) R~(Kx)=2tanh 1 tanh ~. Kx 1+ ~-2+jr J J J  

RX(Ky) = tanh 1 {tanh x 

X EKY(),+()~-l)Jr(l+()~-l)Jr/(2Jt+Jr))~l~ F j (50) 

Expanding these two equations around 2 = 1 to first order we get in both 
cases 

J~ 
R a ( K ) = K + ( 2 - 1 ) I K ( l + ~ f f - ~ , ) + s i n h K c o s h K l n ( t a n h K ) ]  (51) 

which justifies putting K~ = Ky = K. We can now find K c for a given value 
of Jr = Jr, c by solving the equation 

Jr.c 
K C 1 + 2 + Jr, cJ + sinh Kc cosh K,. ln(tanh Kc) = 0 (52) 

By rearranging we obtain an analytical equation for Jr,, as a function 
of K~,: 

J~,c = - 2  Kc + sinh Kc cosh K c ln(tanh K~) 
2K,. + sinh K C cosh Kc ln(tanh K,,) 

(53) 

The phase diagram described by Eq. (53) is shown in Fig. 1. We notice that 
K , . ( J r = 0 ) = � 8 9  ), which is exact, whereas K c ( J ~ o o ) ~ 0 . 1 4 0  , 
implying that this approach overestimates the critical temperature in the 
strong-coupling limit. 

4.2. MigdaI-Kadanoff  RG I I  

This approach follows the same general pattern as the one above, with 
the exception that instead of adding the interlayer couplings to the 
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intralayer couplings, we involve them in the decimation procedure (see 
Figs. 3bII-3eII). This requires that we apply a special decimation proce- 
dure corresponding to the decimation of two opposite spins in two coupled 
Ising chains. We start with the one-dimensional Hamiltonian [compare 
with Eq. (2)] 

N 
2 2 1 1 2 --fljt~ K Z [0-]0-]+ l + ~i0- i+ l '~-2Jr(0-i0-i  +0"]+10"/2+1)] 

i=1 
(54) 

and define spins g to be situated at every second 0- site along the chains. 
After some algebra we obtain the following renormalized Hamiltonian: 

N/2 
1 1 J. 1 [d2 2 ", --fl jta= ~" (3A+�89188  +- ip i+l)  

i = 1  

1 1 2 (IJrK_t._l 1 2 1 ]22 ~- "4C(~'Li]'li+l'~-#2i]'l~+l )-~- 4C)(/'li#i ~-#i+l i+1) 

+ (�88 1 ~  1 B , ,  1 1  /22. 2 
- - ~ t l - - ~  ) [ l . t i ~ i + l  i lA i+  1)  (55) 

where 

A = ln[4 cosh(J~K)] 

B = In [cosh(2K)] 

= ~ ln{412 cosh(2J~K) cosh(4K) C 

1 In e2J'K cosh(4K) + 1 
D e 2J`K + cosh(4K) 

+ 1 + cosh2(4K)] } 

The renormalized Hamiltonian involves two kinds of new couplings. There 
is a four-spin coupling as in the Ashkin-Teller model, which we choose to 
truncate, since it introduces a nontrivial and hard to handle coupling type 
into the problem. We also get a two-spin coupling between next-nearest 
neighbors across the chains. Qualitatively, after a large number of renor- 
malizations this kind of coupling will be connecting spins at a large 
distance with respect to the original chain, and therefore it does not seem 
unreasonable to add this coupling strength to the intralayer couplings. In 
fact, when we apply the Migdal-Kadanoff renormalization scheme, we can 
regard this as an additional bond-moving process. If instead one chooses 
either to add it to the interlayer couplings or to truncate it, the predicted 
phase diagram will suffer from the problem that the transition temperature 
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is unbounded in the strong-coupling limit. With the above approximations, 
the decimation equations for the Ising chains become 

1 1 1 ~ln R2(K)= ~ D---~ A +-~ C = 
e 2J~K cosh(4K) + 1 

e 2J~K -I- 1 
(56) 

1, e 2J~K cosh(4K) + 1 
(57) 

Following Figs. 3bII-3eII, we now perform a four-step renormaliza- 
tion scheme similar to the one performed in Section 4.1, where we make use 
of the decimation procedure described above. Since generalizations from 
2 = 2 to arbitrary 2 have not been possible, we end up with two different 
equations describing the renormalization of K, corresponding to the two 
different directions in the planes. By averaging the two equations we get the 
following fixed-point equation: 

41 ln(F) + ~ In 1 + e 2Jr,c< xflF cosh(8K~) Kc 0 
1 + e 2Jr,eKe N ~  

(5s) 

where 

e 2s',~Kc cosh(4Kc) + 1 
F =  eZ&cKc+ cosh(4Kc) (59) 

This equation has to be solved numerically in order to obtain K,. as a 
function of Jr ,  (see Fig. 1). We notice that Kc(Jr.c=O)~0.429 and 
Kc(Jr.c-~oe)~0.215, which means that this approach describes the 
strong-coupling limit more accurately than the first approach. 

It should be noted that Parga and Van Himbergen, (9) who studied 
finite Ising slabs, including the system of two coupled planes, used the 
Migdal-Kadanoff approximation scheme in a way that resembles ours. But 
in contrast to our approach, these authors treated the problem strictly 
within the Migdal-Kadanoff approximation by incorporating the addi- 
tional couplings appearing in Eq. (57) in the unrenormalized Hamiltonian 
and instead of making a four-state procedure they performed a two-state 
renormalization ~21~ in which bond moving takes place in one step. In this 
way they reached a line of fixed points corresponding to nonzero values of 
the additional couplings except for Jr = 0. By projecting this line onto the 
(K, Jr) plane, they found a phase diagram which involves a serious 
overestimation of the critical temperature for all values of Jr. 
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5. M O N T E  CARLO S I M U L A T I O N S  

We have used conventional Monte Carlo computer-simulation tech- 
niques (26'27) to investigate the equilibrium behavior of the two coupled 
Ising planes. Specifically, we have been concerned with the determination 
of the phase diagram Kc(Jr), the test of the scaling relations suggested in 
Section 2, and the determination of the behavior of the interlayer correla- 
tion function in the vicinity of the critical line Kc(J~) in the (K, J~) plane. 

The simulations were carried out using a standard Metropolis Monte 
Carlo method for (he grand canonical ensemble (constant values of K 
and Jr). The elementary excitation was chosen to be a single-spin-fiip 
process (Glauber dynamics). The calculations were performed for a number 
of different system sizes, N =  2I 2, with l ranging from 4 to 48, and with 
each of the two lattices subjected to periodic boundary conditions. Each 
simulation was initiated in the completely ordered state and t o = 4 x 103 
Monte Carlo steps per site (MCS) were used for equilibration. Typically, 
t 1 = 105 MCS were subsequently used for computing averages. For large 
values of the relative coupling strength J~ larger values of t 1 were chosen 
to circumvent the problem of an increase in the relaxation time of dynamic 
correlations: for Jr = 7, 10 we chose t~ = 3 x 105 MCS and for J,. = 15 we 
chose tl = 6 x 105 MCS. 

The basic thermal averages calculated were the size-dependent inter- 
layer correlation function P12,t = (at~2)~, the order parameter (a)~,i, the 
isothermal susceptibility Zr.l , i=NiK((a2)t,~ - (o-)~), and the 4th-order 
cumulant Ut, i=  1 -  1(o-4)t ,](a2)~i.  Here the subscript i =  1, 2 refers to 
taking either the total magnetization ( i--1)  or the magnetization of one 
single plane (i = 2) as the order parameter. The choice of the appropriate 
order parameter depended on the interlayer coupling strength: for low 
values of Jr, J~ ~< 0.3, it was found that different ordering of the layers 
might take place, leading to an unreasonably low value of the total 
magnetization, thus making the single-plane magnetization the proper 
choice of the order parameter. For the higher values of J,., we could obtain 
better statistics by choosing the total magnetization as the order parameter. 

5.1. Phase Diagram 

In order to determine the phase diagram, series of simulations were 
performed for fixed values of Jr in the interval JrE [0, 15]. The value of 
Jr = 15 corresponds to the largest value of Jr which permitted a reasonably 
accurate determination of the critical point with the applied method. For 
each value of Jr an appropriate K interval of length A~K=0.05 was 
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Table I. K c as a F u n c t i o n  o f  J r ,  Estimated from Monte Carlo Data by 
Binder's Cumulant Method 

Jr 0 0.01 0.015 0.02 0.03 0.04 0.06 0.08 0.t 
K~ 0.442 0.435 0.432 0.428 0.420 0.415 0.408 0 . 4 0 1  0.395 

J~ 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
K~ 0.376 0.362 0.352 0.343 0.336 0,329 0.323 0.316 0,310 

J~ 1,5 2 2.3 3 4 5 7 10 15 
K~ 0,290 0,277 0.269 0256 0.244 0.237 0,229 0223 0,218 

0.15 
0,384 

1.3 
0.299 

investigated by simulations performed in steps of A2K=0.005. This was 
done for various lattice sizes ranging from l = 4 to l = 32. 

The data thus obtained were used to determine the critical points 
Kc(Jr) by Binder's cumulant method. (28'29~ For  fixed Jr, the method was 
implemented by displaying three different realizations of the ratio rl,z(K ) = 
Ull,i(K)/U12,i(K): r4,32(K), rs,2o(K), and r24,12(K), in the investigated K 
intervals. The existence and location of a common fixed point rl,2(Kc)= 1 
were tested. Generally, it was found that a fixed point could be found, lead- 
ing to a determination of K c with an accuracy of cSKc. = 0.001 (considering 
only the uncertainty associated with the use of the cumulant method). For 
J,. = 15, however, the determination was less certain, as mentioned above. 
For  this particular value the cumulant ratios were rather fluctuating. 

The phase diagram obtained by using the cumulant method is shown 
in Fig. 1 and the pairs of (Jr, Kc) values are given in Table 1. It is seen from 
the table that Kc(Jr) decays from a value very close to the transition point 
of the two-dimensional Ising model at Jr = 0 to about half of this value at 
strong couplings. The value at Jr = 15 is a little smaller than expected. 
For  comparison between the theoretically predicted phase diagrams and 
the phase diagram obtained from Monte Carlo simulations we refer to the 
discussion. 

5.2. Scaling Relations 

The Monte Carlo simulations performed in order to test scaling rela- 
tions put forward in Section 2 were designed to facilitate an investigation 
of the relation for the shift in critical temperature, Eq. (12), and of the 
finite-size scaling forms, Eq. (19). To investigate Eq. (12), the data points 
obtained for the phase diagram could be applied directly. To test Eq. (19), 
a series of simulations were performed at K = 0.4407 ~ K 2D for 21 values of 
Jr in the interval Jr s [0,01, 1 ]. 
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To test the relation Eq. (12), we refer to Fig. 4a, which displays r0 vs. 
Jr in a log-log plot. We have indicated the existence of three different 
regimes by displaying a particular linear region for ln(Jr)~ [ -2 .5 ,  0.4]. In 
this region the slope is ~ =0.5587 (p = 0.9997), where p is the correlation 
coefficient obtained from the linear regression analysis. This result agrees 
within a few percent with the predicted slope. It seems reasonable to talk 
about two crossovers, one at high values of Jr leading to a nonscaling 
region, and one at low values of Jr, to a region with another type of scaling 
behavior, or possibly nonscating behavior, as discussed below. 

To test the scaling relations in Eq. (19), we have analyzed the data 
obtained from a simulation at K--- K 2~ in terms of the quantities 

j -  v/~ 

x =  1 ~21=13/'~(ff )l, 2 , f2 - - l  -~/~" - - ,  2 - -  ,~T,t,2, ('23 = 12~/Vg12,~ (60) 

which derive from a reformulation of Eq. (19), with x as the basic scaling 
variable. If the scaling relations are valid, we expect a data collapse in the 
form of s '2i=f,(x ). The individual g2i are displayed vs. x in Figs. 4b-4d. 
Each individual curve was generated for l =  8 to l =  48 and Jr C--[0,01, 1]. 
A cutoff of larger values of Jr was chosen since, for these values, no scaling 
behavior was expected. One sees from the figures that the data are 
approximately collapsing in all three cases, that is, universal scaling func- 
tions do seem to exist, at least for low values of the scaling variable. The 
opposite limit corresponds to small lattice sizes and/or weak interlayer 
coupling strengths. In this limit, more scattering in the data is observed, 
which may reflect a breakdown of the numerical method applied and/or 
that the scaling theory does not apply in this limit. If the latter is true, we 
recover two crossovers. 

5.3. Behavior of the Interlayer Correlat ion Function 

The behavior of the interlayer correlation function (or the force) in the 
(Jr, K) plane was investigated by the following method. From the simula- 
tions performed at K~ ~ it was concluded that the interlayer correlation 
function shows weak scaling in the sense that the finite-size correction to 
the scaling form for the interlayer correlation function [cf. Eq. (19)], which 
is a function of x, converged quite rapidly, implying that for Jr > 0.1 the 
behavior for different lattices with l > 2 4  was independent of the lattice 
size. Clearly, this type of behavior cannot be expected in any part of the 
(K, Jr) plane, especially not in the vicinity of the critical points. However, 
intuitively it may be expected that for any smaller value of K the finite-size 
corrections are indeed of reduced importance sufficiently far from the 



746 Hansen et  al.  

critical point at this particular K value and for sufficiently large l values. 
We have here decided to extract the qualitative behavior of the interlayer 
correlation function for the l =  32 lattice, assuming that the approach to 
the critical points is well represented on lattices of this size. 

A series of simulations was performed on an l =  32 lattice for four 
different K values, K=0.244,  K=0.310,  K=0.343,  and K=0.395,  corre- 
sponding to the estimated values of Kc at J r  = 4, 1, 0.5, and 0.1. For each 
K value, Jr was allowed to vary in an interval that made the system pass 
from the disordered state across the critical region into the ordered region. 
Representative data for the behavior in the vicinity of a critical region 
are shown in Fig. 2. The critical region is indicated by an asterisk on the 
curves, corresponding to the respective values of the interlayer correlation 
function calculated at the estimated transition points. From Fig. 2 we 
conclude that P12 is increasing quite rapidly before the critical region is 
approached, P12,c ~ 0.35 for K = 0.395 and Plz~. ~ 0.88 for K =  0.244. In the 
log-log plot the variation appears to take place linearly with a slope close 
to e = 1. This is independent of the K value. In the critical region we 
see no abnormal behavior. This may be the result of finite-size effects. On 
passing the critical line there is a crossover to a region with a marked 
flattening of the curves which seems to reflect a "saturation effect." No 
linear behavior resembling the scaling behavior for t = 0 is apparent, but 
again this picture may be modified by finite-size effects. 

6. D I S C U S S I O N  

In the previous sections we have been concerned with various theore- 
tical and numerical approaches to the thermodynamics of two coupled 
Ising planes. We shall now make some comparisons between the various 
results obtained. 

Approximations to the phase diagram of the system were obtained 
from five different types of calculation, namely by two types of applications 
of mean-field theory (MFI and MFII) ,  by two different approximative 
implementations of the Migdal-Kadanoff  scheme (MKI and MKII),  and 
by Monte Carlo (MC) simulations (Fig. 1). We will take the MC result as 
our reference, since the least problematic approximations were involved in 
the implementation of this method. Quite generally we find good agree- 
ment between MC results and the results from MKII  and MFII,  although 

2 0  MFII  is not valid in the vicinity of K c . The results agree well with data 
obtained by series expansions for weak couplings. (7) Both MKII and MFII  
and the MC results verify that Kc(Jr--~oo)=�89 On the other 
hand, MFI  and MKI represent the phase diagram in a less precise way, 
although MKI predicts the behavior in the weak-coupling limit reasonably 
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well and MFI predicts the doubling of the transition temperature in the 
strong-coupling limit. All this reflects the expected level of precision of the 
methods. However, perhaps unexpectedly, the methods do not systemati- 
cally overestimate the critical temperatures when we disregard MFI. 

From the point of view of further refinement of the theoretical 
methods used in the general description of critical phenomena, our results 
seem to indicate that it is still worthwhile to try to improve approximate 
theoretical descriptions of lattice critical phenomena. As we have seen, it is 
in fact possible to improve traditional mean-field descriptions as well as 
the original Migdal-Kadanoff RG scheme for the present model system. 
However, in the case of MFII  the improvement was based on the close 
relation between our model and the two-dimensional Ising model, and 
MKII  suffered from a somewhat adhoc treatment of the new types of 
bonds appearing in the problem after the decimation. Thus, the proposed 
types of solutions may be limited to the present model. 

From the MC data the scaling relations between Jr and different 
variables were tested, including the shift in critical temperature To, the order 
parameter, the isothermal susceptibility, as well as the interlayer correlation 
function evaluated at the transition point of the two-dimensional Ising 
model. The common result of the test is that, in an intermediate range of 
Jr values, the relations do indeed seem to be obeyed. At large Jr values, 
there seems to be a crossover to a nonscaling region. At small Jr values a 
rather interesting crossover to a new type of behavior is observed. This 
is common to all the scaling plots and does not agree with the estimated 
Ginzburg critical region. (18) Assuming that this shift is not connected 
with a reduction in numerical precision, this signals a breakdown of the 
mean-field-based scaling theory and it may be proposed that this is a new 
scaling regime, where an independent scaling behavior, governed by strong 
fluctuations near the transition point of the two-dimensional Ising model, 
is present. We have no theory to support this or even to guide us in the 
proper way to construct relevant scaling functions, and we have not tried 
to build up trail scaling functions, but from the individual simulations we 
found that, e.g., a linear variation of P12 with Jr seems to be a reasonable 
assumption. It is interesting to note that this is also the qualitative 
behavior observed in the disordered phase at higher temperatures. 

Another interesting feature of this proposition is that it may imply that 
critical fluctuations have a quite special influence on two interacting 
surfaces in the ordered state and close to a critical point. Assuming Jr to 
be a decreasing function of the distance r, keeping the system at Ki  D and 
decreasing the distance will be equivalent to passing a "fluctuating region" 
where the force increases strongly with r, into a "mean-field region" where 
the force increases less strongly with r. From our MC investigations, it 
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seems that the equivalent of this behavior for K < K 2D is the increase before 
and after the passage of the critical line. However, here there is apparently 
not a crossover from one scaling regime to another, but rather a change 
from a linear regime, which is predicted by mean-field calculations, to a 
nonscaling region. 

It is clear that further investigation of these phenomena might be of 
some interest in the further study of forces influenced or governed by 
fluctuations. However, it is felt that the present model underestimates the 
potential importance of fluctuations for the effective interactions between 
surfaces containing many degrees of freedom. Here, we think not only of 
the sign of the force, but generally of the extent to which the force is 
affected by the fluctuations in the order parameter distribution, that is, how 
strongly it couples to the order-disorder transition. It is likely that more 
complex interlayer couplings, for instance, four-spin couplings known from 
the Ashkin-Teller model, and the associated richer phase diagram, could 
add some more interesting features to the study of forcesl Clearly, addition 
of various types of more complex degrees of freedom to the problem would 
be of particular interest in relation to biological systems. Likewise, addition 
of a fluctuating medium between the surfaces would mimic the situation 
in a real bilayer system. A study of this sort could be performed by 
investigating the effect of a critical wetting layer associated with tricritical 
behavior. 

7. CONCLUSION 

In the present paper we have investigated the problem of two 
ferromagnetically coupled Ising planes with local two-spin interactions by 
using various numerical and theoretical methods to determine the phase 
diagram, to investigate the scaling behavior of the model as a function of 
the interlayer coupling strength, and to make a qualitative study of the 
interlayer correlation function in the critical regions. The phase diagrams 
predicted by special implementations of mean-field theory and the Migdal- 
Kadanoff RG scheme are in good agreement with the phase diagram 
obtained by MC simulations. All these methods confirm the prediction that 
the transition temperature in the strong-coupling limit is twice the value 
obtained for the ordinary Ising model. Mean-field arguments suggest 
scaling relations involving the shift in critical temperature, the order 
parameter, the susceptibility, as well as the interlayer correlation function, 
as functions of the interlayer coupling strength at K =  Ki D. The scaling 
relations are obeyed in an intermediate range of coupling strengths. This 
opens up the possibility of a crossover to another type of scaling behavior 
with a more rapid increase in the various variables for very small values of 
the interlayer coupling strength. Since the interlayer correlation function 
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measures the force between the layers and since the coupling strength is 
expected to decrease with distance, this situation implies a more rapid 
increase of the force in the long-distance regime than in the short-distance 
regime. From the qualitative study at higher temperatures, we observe 
that an equivalent type of behavior is associated with the disorder order 
transition. 
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